Acyclovir

Product Availability

Solid	• Tablet: 400 mg, 800 mg (Zovirax [®] [Mylan]; others)	
	• Capsule: 200 mg (Zovirax [®] [Mylan]; others)	
Liquid	• Oral suspension: 200 mg/5 mL (Zovirax [®] [Mylan]; others)	

Physicochemical (drug)

Molecular weight:	Permeability:	Water solubility:
• 225.21	• LogP –1.56	• Base 2.5 mg/mL (37°C)
	• LogD –1.76 (pH 7.4)	• Na-salt 100 mg/mL
pKa:	Classification:	
• 2.27, 9.25	BCS Class 3 or 4; BDDCS Class 4	

Pharmaceutical (product)

Solid	• Tablets disperse in water (20 mL) within 2 minutes
Liquid	• Suspension:
	◦ pH 6.2
	• Osmolality: 874 mOsm/kg (measured 1:4 dilution with
	sterile water); 4205 mOsm/kg (calculated based on
	measurement of 1:5 dilution with sterile water) ¹
	 ○ Viscosity 282 mPa · s
	 May contain glycerin and sorbitol
	• Maintain at controlled room temperature (do not refrigerate).
Note	• Capsules and oral suspension are considered bioequivalent.

Pharmacokinetic (patient)

Absorption	• Specific site not known; t _{max} within 2 hours after oral dose
	• Bioavailability ~10%–30% (variable, incomplete).
Transport	• Substrate for MATE1 efflux; OAT1 and OCT1 uptake
	• Plasma protein binding ~9%–33%
	• V _d ~0.69 L/kg
Metabolism	• Minimal hepatic metabolism to 9-CMMG and
	8-hydroxy-acyclovir
	• Most is eliminated unchanged in urine.
	• Cl ~327 mL/min/1.73 m ²

Enteral Administration and Nutrition Considerations

Compatibility, Stability, and Bioavailability Considerations

- Tablet contents are absorbed when administered into duodenum.²
- Specific excipients (sodium lauryl sulfate and/or sodium caprate) can act as permeability enhancers for acyclovir, when included.³
- Acyclovir is unstable (HPLC analysis) in sucrose/maltitol or fructose/ glucose solutions.⁴

- Commercial suspension combined (1:1) with Osmolite 1.2, under simulated clinical conditions, would result in clogging an 8 Fr, but not a 20 Fr, feeding tube.¹
- Solid dispersions of acyclovir with multiple hydrophilic carriers resulted in enhanced dissolution and permeability.⁵
- Several amino acid ester prodrugs of acyclovir (eg, valine → valacyclovir) improve bioavailability by enhancing transport.⁶

Drug-Nutrition Interactions

- Drug may influence nutrition status directly or indirectly:
 - CNS: headache, encephalopathy, confusion, ataxia, paresthesia
 - GI: nausea, vomiting, diarrhea, elevated LFTs
 - Metabolic: hemolysis, anemia, transient elevation of BUN
 - Other: peripheral edema, myalgia
- Influence of malnutrition or obesity on drug disposition:
 - The body weight–normalized volume of distribution (L/kg) is much smaller in obesity and suggests that the drug is best dosed based on a lean body weight.⁷
- No known influence of food on oral absorption or bioavailability.

Recommendations

Gastric	• Disperse tablet in water (20 mL) prior to administration.
	• Avoid using the suspension for enteral access device
	administration.
	• No need to hold EN beyond the time required to
	flush-administer-flush.
Postpyloric	• As above.
	 Monitor for any unexpected change in effect.
Other	• As with all antimicrobials, consider parenteral alternative
	for acutely ill patients to ensure therapeutic concentrations.

References

- Klang M, McLymont V, Ng N. Osmolality, pH, and compatibility of selected oral liquid medications with an enteral nutrition product. *JPEN J Parenter Enteral Nutr.* 2013;37: 689–694.
- 2. Lewis LD, Fowle AS, Bittiner SB, et al. Human gastrointestinal absorption of acyclovir from tablet duodenal infusion and sipped solution. *Br J Clin Pharmacol.* 1986;21:459–462.
- Ates M, Kaynak MS, Sahin S. Effect of permeability enhancers on paracellular permeability of acyclovir. J Pharm Pharmacol. 2016;68:781–790.
- 4. Desai D, Rao V, Guo H, et al. Stability of low concentrations of guanine-based antivirals in sucrose or maltitol solutions. *Int J Pharm.* 2007;34:87–94.
- 5. Nart V, França MT, Anzilaggo D, et al. Ball-milled solid dispersions of BCS Class IV drugs: impact on the dissolution rate and intestinal permeability of acyclovir. *Mater Sci Eng C Mater Biol Appl.* 2015;53:229–238.
- Katragadda S, Jain R, Kwatra D, et al. Pharmacokinetics of amino acid ester prodrugs of acyclovir after oral administration: interaction with the transporters on Cac-2 cells. *Int J Pharm.* 2008;362:93–101.
- 7. Boullata JI. Drug disposition in obesity and protein-energy malnutrition. *Proceed Nutr Soc.* 2010;69:543–550.

Copyright © 2019. Boullata JI. *Guidebook on Enteral Medication Administration*. Silver Spring, MD: American Society for Parenteral and Enteral Nutrition; 2019.